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Abstract

Diffusion models have achieved remarkable success in
text-to-image generation. However, their practical applica-
tions are hindered by the misalignment between generated
images and corresponding text prompts. To tackle this is-
sue, reinforcement learning (RL) has been considered for
diffusion model fine-tuning. Yet, RL’s effectiveness is lim-
ited by the challenge of sparse reward, where feedback is
only available at the end of the generation process. This
makes it difficult to identify which actions during the de-
noising process contribute positively to the final generated
image, potentially leading to ineffective or unnecessary de-
noising policies. To this end, this paper presents a novel RL-
based framework that addresses the sparse reward problem
when training diffusion models. Our framework, named
B2-DiffuRL, employs two strategies: Backward progres-
sive training and Branch-based sampling. For one thing,
backward progressive training focuses initially on the fi-
nal timesteps of denoising process and gradually extends
the training interval to earlier timesteps, easing the learn-
ing difficulty from sparse rewards. For another, we perform
branch-based sampling for each training interval. By com-
paring the samples within the same branch, we can identify
how much the policies of the current training interval con-
tribute to the final image, which helps to learn effective poli-
cies instead of unnecessary ones. B2-DiffuRL is compati-
ble with existing optimization algorithms. Extensive exper-
iments demonstrate the effectiveness of B2-DiffuRL in im-
proving prompt-image alignment and maintaining diversity
in generated images. The code for this work is available1.

1. Introduction
The text-to-image generation task aims to produce images
from textual descriptions, holding significant potential for

*Equal contribution. †Corresponding author.
1https://github.com/hu-zijing/B2-DiffuRL.
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Figure 1. (Prompt-image Misalignment) Text-to-image diffusion
models (e.g., Stable Diffusion (SD) [52]) may not generate high-
quality images that accurately align with prompts. Existing re-
inforcement learning-based diffusion model fine-tuning methods
(e.g., DDPO [8]) have limited effect and loss of image diversity.
For each set of images above, we use the same seed for sampling.

various applications [49, 56]. Recently, diffusion models
have garnered widespread attention due to their success in
this domain [15, 23, 59]. These models employ a sequen-
tial denoising process that transforms random noise into
detailed images. However, even the most advanced text-
to-image diffusion models, such as DALLE3 [6] and Sta-
ble Diffusion [52], often encounter issues with misalign-
ment between the generated images and the textual descrip-
tions [28]. This misalignment limits the practicality and ef-
fectiveness of these models in real-world applications.

To solve this problem, recent studies have explored in-
corporating reinforcement learning (RL) techniques to fine-
tune pre-trained text-to-image diffusion models [8, 17, 32,
46, 63, 65]. By formulating the step-by-step denoising pro-
cess as a sequential decision-making problem, RL enables
diffusion models to optimize for specific long-term objec-
tives, beyond merely fitting to static data as done in standard
supervised learning [29, 52, 64]. In this formulation, noisy
images at different timesteps are viewed as states in RL,
while denoising at each timestep corresponds to an action.
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Figure 2. (Sparse Reward) When people train diffusion models with reinforcement learning (RL), the reward is only available at the end
of the generation process. This sparsity limits the success of RL in diffusion models. We propose B2-DiffuRL, a new RL framework with
two strategies, to mitigate this issue.

The alignment scores between the final generated images
and the textual prompts, which can be derived from human
preferences or model evaluations, serve as the rewards. The
pipeline of training diffusion models with RL is illustrated
in Figure 2 (a). Researchers first sample images using the
diffusion model with given prompts and then calculate the
alignment scores as rewards. These sampled trajectories,
consisting of images at different timesteps and their corre-
sponding alignment scores, can be used as training data for
RL to further enhance the diffusion models [25].

However, RL has so far made limited success in improv-
ing prompt-image alignment, primarily due to the key chal-
lenge of sparse reward. As shown in Figure 2 (b), reward
in this context is sparse because it is only available at the
end of the generation process. Sparse rewards are harmful
to RL-based diffusion fine-tuning in two ways:
• Limited improvement in alignment. The denoising ac-

tions at different timesteps focus on varying levels of
semantics (e.g., early timesteps define layout, middle
timesteps refine style, and late timesteps enhance de-
tailed objects) and have different impacts on the final
image [68, 69]. With sparse rewards, it is difficult to
identify which actions during the denoising process con-
tribute positively to the final alignment, so actions at dif-
ferent timesteps receive inappropriate rewards. As a re-
sult, learning effective policies becomes challenging.

• Sacrificing diversity for better alignment. To achieve
higher alignment score, the model may learn unnecessary
policies. For example, with prompts like “a bear washing
dishes”, cartoon-like images are more likely to get higher
rewards than realistic photographs because the prompts
are often depicted in a cartoon style in pre-training data.
With sparse rewards, model fine-tuned via naive RL al-

gorithms (e.g., DDPO [8]) may learn these unnecessary
policies about styles, resulting in generating only cartoon-
like images, as shown in Figure 1. This shows a trade-off
between alignment and diversity, where alignment is im-
proved at the expense of diversity [54, 71].

The challenge of sparse reward has attracted widespread at-
tention in traditional RL [20, 62]. The classic solutions are
constructing additional rewards by various techniques, such
as reward shaping [40, 50], to achieve dense reward func-
tions [13, 19, 27, 43]. Unfortunately, these solutions are not
suitable for diffusion models because it is hard to evaluate
the noisy images in the denoising process. This motivates us
to ask: How can we mitigate the negative effects of sparse
rewards when using RL to train diffusion models?

In this paper, we introduce a novel RL-based fine-tuning
framework for diffusion-based text-to-image generation to
address the challenge of sparse reward, which we refer to as
B2-DiffuRL 2. Our framework employs two strategies. The
first one is backward progressive training (BPT), applied to
the training stage. Initially, we focus training on only the fi-
nal timesteps of the image generation process, as shown in
Figure 2 (c). As training rounds increase, we gradually ex-
tend the training interval backward to cover all timesteps,
and achieve training on the entire denoising process in the
end. The second strategy is branch-based sampling (BS),
applied to the sampling stage. For each training interval in
denosing process, we perform branch sampling to get mul-
tiple samples under each branch, as shown in Figure 2 (d).
Within each branch, we only select the best and worst sam-
ples to form a contrastive sample pair for RL training.

2B2-DiffuRL is short for Backward progressive training and Branch-
based sampling for Reinforcement Learning in Diffusion models.



Our framework has the following three capabilities: (1)
Better prompt-image alignment. With small training inter-
val, BPT strategy enables the models to easily and quickly
learn the policies for the later timesteps of generation. As
the model becomes proficient in these later timesteps, it pro-
gressively learns to manage the earlier timesteps of the de-
noising process. By mitigating the complexity of dealing
with the entire process from the outset, BPT reduces the
learning difficulty associated with sparse rewards. More-
over, with BS strategy, the contrastive samples within the
same branch share identical states and actions up to the
start of the training interval. By comparing the contrastive
samples, the models can accurately identify how much the
denosing policies of the current training interval contribute
to the final image during training. (2) Maintaining diversity
when improving alignment. Denoised from the same inter-
mediate state, the contrastive samples share similar coarse-
grained visual information (e.g., image styles) but receive
different rewards. It prevents the models from learning un-
necessary policies (e.g., about image styles) as shortcuts to
achieve high rewards, thus helping maintain diversity. (3)
Compatibility. Although we mainly compare with the cur-
rent state-of-the-art RL-based fine-tuning algorithm called
DDPO [8] in this paper, our framework is compatible with
any previous optimization algorithm such as policy gradi-
ent [57], DPO [48, 63] and DPOK [17]. Experiments show
that applying B2-DiffuRL can improve effectiveness of dif-
ferent algorithms in terms of both alignment and diversity.

Our contributions can be summarized as: (1) We investi-
gate the problem of RL-based diffusion models fine-tuning
for improving prompt-image alignment, and for the first
time highlight the challenge of sparse reward. (2) We pro-
pose a compatible RL-based fine-tuning framework named
B2-DiffuRL, employing backward progressive training and
branch-based sampling strategies, to address the above chal-
lenge. (3) Extensive experimental results on Stable Diffu-
sion [52] show the effectiveness of B2-DiffuRL in terms of
both alignment and diversity when compatible with differ-
ent RL algorithms, without increasing computational cost.

2. Related Work

2.1. Text-to-Image Diffusion Models

Diffusion models have gained substantial attention for their
ability to generate high-quality samples [23, 59, 60, 67].
One of the primary applications of diffusion models is im-
age generation [5, 24]. These models have been shown
to produce images that are both high in fidelity and di-
versity, rivaling the outputs of Generative Adversarial Net-
works (GANs) [15, 18]. The extension of diffusion mod-
els to text-to-image generation has opened up possibilities
for creating images from textual descriptions [70]. Works
like DALL-E [49] and Imagen [55] have demonstrated that

diffusion models can be effectively conditioned on textual
input to produce corresponding images. Despite their suc-
cess, text-to-image diffusion models often suffer from the
issue of prompt-image misalignment [31, 44].

2.2. Reinforcement Learning with Sparse Reward
Reinforcement Learning (RL) is a learning paradigm in
which an agent learns to make decisions by interacting with
an environment to maximize cumulative rewards [29, 45].
Applications of RL span various domains, including gam-
ing, robotics, finance, and healthcare [11, 39]. Recently, RL
has played an important role in alignment. For example,
RL has been leveraged to fine-tune large language models
(LLMs), ensuring that the generated outputs align with hu-
man values and intentions [9]. One of the significant chal-
lenges in RL is dealing with sparse rewards, where feedback
signals are infrequent and the agent must explore exten-
sively to discover rewarding states [50, 62]. Traditional RL
algorithms struggle in such settings due to the inefficiency
in learning from limited feedback [20, 40]. Various tech-
niques have been proposed to address this challenge [3, 42],
such as reward shaping [13, 19, 27, 43], where additional
heuristic rewards are provided to guide the agent. However,
these classic RL strategies can not be applied to our prob-
lem directly, since it is difficult to evaluate the noisy images
during denoising process.

2.3. Improving Alignment of Diffusion Models
Early diffusion models focused primarily on the quality
and fidelity of the generated images [15, 23, 59]. How-
ever, as the demand for a more interactive and user-driven
generation grew, improving alignment between prompts
and generated images is crucial for enhancing the usabil-
ity and reliability of these models in practical applica-
tions [16, 34, 53, 72]. The initial approaches to condi-
tioning diffusion models on text prompts employ a vari-
ety of techniques, including both classifier guidance [15]
and classifier-free guidance [22]. With the advent of
LDMs [51], subsequent researches focus on fine-tuning pre-
trained models to enhance alignment [26, 33]. Recently, RL
has been employed to fine-tune the text-to-image diffusion
models [8, 10, 17, 32, 46, 63, 65, 66]. However, the issue
of sparse rewards limits the performance of such methods
in prompt-image alignment, and even sacrifices a lot of di-
versity in order to improve controllability. In this paper, by
mitigating the negative effects of sparse rewards, we further
develop the application of RL in training diffusion models.

3. Method
In this section, we first introduce how to train diffu-
sion models with RL. Then we highlight the challenge
of sparse reward in this context. Finally, we introduce
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Figure 3. (Method) We propose the framework B2-DiffuRL, employing two strategies to address the challenge of sparse rewards. (a)
Backward progressive training strategy: We focus initially on the final timesteps of the denoising process and gradually extend the training
interval to earlier timesteps, easing the learning difficulty associated with sparse rewards. (b) Branch-based sampling strategy: We perform
branch-based sampling at the beginning of each training interval. Comparisons between samples within the same branch provide a clear
indication of whether the policies of the current training interval positively contribute to the final images.

B2-DiffuRL, employing two strategies to address this chal-
lenge. B2-DiffuRL can be compatible with different RL al-
gorithms, such as DDPO [8], DPO [63] and DPOK [17].

3.1. Problem and Challenge
Text-to-Image Diffusion Models. Text-to-image diffusion
models iteratively refine random noise into a coherent im-
age that matches the given prompt [52]. The process of dif-
fusion models consists of two phases: the forward process
and the reverse process [23]. In the forward process, an im-
age x0 is gradually corrupted into pure noise xT through
T steps, where Gaussian noise is added at each step. The
reverse process aims to generate an image from pure noise
conditioned on a textual description c by denoising itera-
tively [23, 58]:

pθ(xt−1 | xt, c) = N (xt−1;µθ(xt, t, c), σtI
2), (1)

where µθ is predicted by a diffusion model parameterized
by θ, and σt is the fixed timestep-dependent variance.
Training Diffusion Models with RL. The denoising pro-
cess of diffusion models can be formulated as a sequen-
tial decision-making problem. Therefore, this process can
be viewed through the lens of RL, where each step in the
denoising process is considered as a decision made by an
agent (the diffusion model). Following this formulation,
the state st at each timestep is represented by (c, t,xt), i.e.,
the text prompt, the current timestep, and the noisy image
at the current timestep. The sequence of states represents
the gradual refinement from noise to the final image. The
action at at each timestep involves denoising by sampling
the next noisy image xt−1. The policy πθ, parameterized

by θ, defines the action selection strategy. In this context,
the policy is defined as πθ(at | st) = pθ(xt−1 | xt, c).
The reward can be defined as a prompt-image alignment
score r(c,x0) ∈ R, which is given by human preferences or
model evaluations. A larger reward means a better prompt-
image alignment. To improve the prompt-image alignment
of diffusion models, we can execute RL-based training by
maximizing the following objective:

JRL(θ) = Ec∼p(c),x0∼pθ(x0|c) [r(x0, c)] , (2)

where p(c) follows a uniform distribution, meaning that we
randomly sample prompts from a candidate set of prompts.
To construct the training data for RL, we first collect de-
noising trajectories via sampling based on diffusion models.
Then we can update parameters θ via gradient descent [41].

Challenge of Sparse Reward. However, the reward
r(x0, c) is only available at the end of the image gener-
ation process. This sparsity of reward makes it challeng-
ing for the diffusion model to identify which actions during
the denoising process positively impact the final alignment
and reward them appropriately. As a result, the diffusion
model struggles to learn effective strategies and may even
adopt unnecessary or incorrect ones. The classic RL strate-
gies, such as constructing additional rewards, are not suit-
able here because it is difficult to evaluate the noisy images
during the denoising process. This motivates us to develop
new RL strategies for training diffusion models to mitigate
the negative effects of sparse rewards. For a comprehensive
discussion on the challenge of sparse reward, we refer the
readers to Appendix C.



3.2. Strategy 1: Backward Progressive Training
The conventional training methods involve training the
model across all timesteps of the denoising process from the
beginning. However, due to the complexity and large noise
present in the early timesteps, the training process can be
unstable and inefficient, especially with sparse rewards. We
hypothesize that focusing on the final timesteps, where the
generated images are more coherent and less noisy, could
provide a more stable foundation for the RL training. By
mastering these final timesteps first, the model can incre-
mentally handle the earlier, noisier stages more effectively,
leading to overall better performance and control. We call
this strategy as backward progressive training (BPT). For-
mally, let T represent the total number of timesteps in the
denoising process. Initially, we train the model on the last
τ timesteps, where τ < T . Therefore, each trajectory sam-
pled for training consists of τ timesteps:

{st, at, πθ(at | st)|t = τ, τ−1, ..., 1}with reward r(x0, c),
(3)

which can be abbreviated as (sτ :1, aτ :1, πτ :1, r) without
ambiguity. As training progresses, the training interval is
extended backward by incorporating more timesteps, ulti-
mately covering the entire range from T to 1. The train-
ing objective during each phase remains consistent with
Eq. (2). Following DDPO, we use policy gradient estima-
tion [30, 57] and the gradient is:

∇θJBPT = −E
[∑τ

t=1
pθ(xt−1|xt,c)
pθold (xt−1|xt,c)

∇θ log pθ(xt−1 | xt, c) r̂(x0, c)
]
,

(4)
where θold is the parameters of diffusion model prior to up-
date and r̂ is the normalized value of reward r (see Ap-
pendix D.1 for details). The expectation is taken over sam-
pled denoising trajectories.

Previous works fine-tune diffusion models along the en-
tire denoising process from xT to x0, with the sparse reward
r0. With such sparse reward, it is difficult for the model to
directly learn effective network parameters for the entire de-
noising process. We propose BPT to make the model learn
the denoising process from xτ to x0 first. As training pro-
gresses, τ is gradually increased to T , and the model learns
to manage the earlier timesteps after becoming proficient
in later timesteps. This is easier than directly learning the
entire denoising process. By applying BPT, the model can
more effectively learn how to denoise when only x0, state
at the last timestep, has a reward. We refer the readers to
Appendix C for a comprehensive discussion.

3.3. Strategy 2: Branch-based Sampling
The sparse rewards make it difficult to tell whether actions
on certain timesteps during denoising have a positive or
negative effect on the final alignment. To further mitigate
this issue, we introduce the strategy of branch-based sam-

pling (BS). When constructing training data for RL, we per-
form branch sampling at the beginning of training interval
[τ, 1], as shown in Figure 3 (b). Within each branch, we
divide the sampled denoising trajectories (distinguished by
the superscript i) into two groups:

G+ =
{(

siτ :1, a
i
τ :1, π

i
τ :1, r̂

i
) ∣∣r̂i := r̂(xi

0, c) > 0
}
,

G− =
{(

siτ :1, a
i
τ :1, π

i
τ :1, r̂

i
) ∣∣r̂i := r̂(xi

0, c) < 0
}
,

(5)

where group G+ consists of trajectories with positive re-
wards (if available), and group G− consists of trajectories
with negative rewards (if available). We then select the tra-
jectory (s+τ :1, a

+
τ :1, π

+
τ :1, r̂

+) with the best reward from the
positive group and the trajectory (s−τ :1, a

−
τ :1, π

−
τ :1, r̂

−) with
the worst reward from the negative group to form a con-
trastive sample pair for RL. The gradient of the contrastive
sample pair is:

∇θJBS = −E

(
τ∑

t=1

[
pθ(x

+
t−1 | x

+
t , c)

pθold(x
+
t−1 | x

+
t , c)

∇θ log pθ(x
+
t−1 | x

+
t , c)r̂

+

+
pθ(x

−
t−1 | x

−
t , c)

pθold(x
−
t−1 | x

−
t , c)

∇θ log pθ(x
−
t−1 | x

−
t , c)r̂

−

])
.

(6)
By isolating the impact of actions outside the train-

ing interval on the final images, the comparison between
the contrastive samples directly reflects how much the ac-
tions within the training interval contribute to the reward.
Branch-based sampling strategy provides clear signals to
the model, allowing the model to focus on actions that
truly drive positive outcomes. Therefore, it further mitigates
the impact of reward sparsity and facilitates more efficient
learning of effective policies. Moreover, by avoiding learn-
ing unnecessary policies (e.g., image styles), our approach
can also maintain the diversity of generated images, which
will be demonstrated and discussed in the following section.
We emphasize that B2-DiffuRL does not increase computa-
tional cost of RL algorithms, as discussed in Appendix D.3.

4. Experiments
In this section, we evaluate the effectiveness of B2-DiffuRL
in terms of improving prompt-image alignment and main-
taining diversity. We first compare our method with exist-
ing state-of-the-art method DDPO [8]. Then, we focus on
ablation studies on the proposed two strategies, as well as
the compatibility and generalization ability. For simplicity,
we refer to B2-DiffuRL as ours in this section.

4.1. Experimental Setup
Diffusion Models. Following the previous work [8], we
use Stable Diffusion (SD) v1.4 as the backbone diffusion
model, which has been widely used in academia and indus-
try. We apply LoRA to UNet for efficient fine-tuning [26].
We employ DDIM [58] algorithm for sampling. Following
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Figure 4. (Samples) Examples of images generated by different methods on three templates. For each set of images, we use the same
random seed. Our method achieves better prompt-image alignment compared to vanilla Stable Diffusion and DDPO.

the previous work [8], we set the total denoising timesteps
T = 20. The weight of noise is set to 1.0, which decides
the degree of randomness of each denoising in DDIM. Each
experiment is conducted with three different seeds.
Prompt Templates. In the sampling phase, we construct
the prompts based on three different templates. The three
prompt templates consider the behavior of the object, the at-
tribute of the object, and the positional relationship between
the objects in turn, which we believe can cover a wide range
of commonly used prompts in image generation. (1) Tem-
plate 1:“a(n) [animal] [activity]”. We use this template de-
signed by DDPO. The animal is chosen from the list of 45
common animals, and randomly matched with an activity
from the list:“riding a bike”, “playing chess” and “wash-
ing dishes”. (2) Template 2: “[color] [fruit/vegetable]”.
This template focuses on object attributes. To construct a
list of color-fruit/vegetable combinations, we query GPT-
4 [1] about fruits/vegetables’ names and their common col-
ors. We require each item to have at least 3 colors, and
we end up building 40 prompts for this template. (3) Tem-
plate 3: “[object 1] [predicate] [object 2]”. The predicates
refer to positional relationship. We construct the prompts
based on the annotations of Visual Relation Dataset [38].
We choose four predicates: “on”, “under”, “on the left of ”,
and “on the right of ”, and end up with 40 prompts for this
template. The prompts mentioned above are only used for
training. In order to evaluate the generalization ability, we
further construct prompts that will not be used in training.
The full prompt lists are shown in the Appendix H.
Rewards. We score the prompt-image alignment by
BERTScore and CLIPScore, and use them as reward func-
tions: (1) BERTScore is introduced by DDPO [8], in which
one uses the visual language model, such as LLaVA [36], to
generate a description of the image, and then uses BERT’s

recall metric [14] to measure the semantic similarity be-
tween the prompt and the description. (2) CLIPScore is
simply the similarity between text embedding and image
embedding measured by CLIP model [7, 47]. We recom-
mend using CLIPScore as reward function due to the in-
stability of BERTScore, as shown in Appendix F.1. For
implementations, we use 7b half-precision LLaVA v1.5
model [35], DeBERTa xlarge model [21] (a variant of BERT
model), and ViT-H-14 CLIP model [47], respectively. To
improve the stability of training, we normalize the rewards,
as described in detail in Appendix D.1.
Evaluation Metrics. In this paper, we focus on both
prompt-image alignment and image diversity. For align-
ment, we use BERTScore [8] and CLIPScore [7, 47] as met-
rics, the same as reward functions. A higher BERTScore or
CLIPScore represents better prompt-image alignment. For
diversity, following previous works [2, 4, 7, 73], we use in-
ception score (IS) as the metric. A higher inception score
represents better image diversity.

4.2. Qualitative Evaluation
We first evaluate the performance of our method and DDPO
on the three prompt templates rewarded by CLIPScore. We
use our method and DDPO respectively to fine-tune the dif-
fusion model. After the same round of training, we sample
some images from original model and fine-tuned models,
as shown in Figure 4. The results qualitatively show that
our method performs better than DDPO in improving the
prompt-image alignment. We also conduct human prefer-
ence test over 80 independent human raters (from undergrad
to Ph.D.), who are asked to pick the best fit to prompt among
three images generated by different models. As shown in
Figure 7, the images generated by our method get higher
preference rates than original SD and DDPO on all the three
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Figure 5. (Alignment) Alignment curves of our method and DDPO on three prompt templates.

Methods Temp. 1 Temp. 2 Temp. 3

SD 1.3179 1.4133 1.3582
DDPO 1.2886 1.3323 1.3273
Ours 1.3127 1.3579 1.3348

Table 1. (Diversity) IS ↑ of images gener-
ated by the SD [52], DDPO [8], and ours
on three templates. There is a trade-off
between alignment and diversity, while
our method helps maintain diversity.

(b) Diversity (measured by IS ↑)
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Figure 6. (Ablation Study) We separately evaluate the impact of each proposed strategy on
prompt-image alignment and image diversity with template 1. (a) Both BPT and BS strategies
help improve prompt-image alignment. (b) BS strategy also helps to maintain image diversity.
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Figure 7. (Human Evaluation) Hu-
man preference rates for prompt-image
alignment of images generated by SD,
DDPO and our method.

prompt templates. Also, images by our method are more
diverse than those by DDPO. For example, on template 1,
all images by DDPO adopt a cartoon style, while those by
ours keep original styles of SD; on templates 2 and 3, back-
grounds of the images by DDPO tend to reduce to a single
color, while those by ours do not. This can be seen more
clearly from Appendix G.

4.3. Quantitative Evaluation

We compare our method with DDPO quantitatively in terms
of prompt-image alignment and diversity.
Prompt-Image Alignment. Figure 5 shows the curve of
CLIPScore when fine-tuning the diffusion models using our
method and DDPO as the amount of reward queries in-
creases. We can observe that our method almost always
achieves higher CLIPScore during fine-tuning on all the
three prompts. This shows that our approach can improve
prompt-image alignment better with the same number of re-
ward queries compared to DDPO, which is due to our pro-
posed two strategies.
Image Diversity. We evaluate the diversity of the images
generated by original SD and the models fine-tuned by our
method and DDPO. The results are shown in Table 1. Af-
ter 25.6k reward queries during fine-tuning, both the models
trained by ours and DDPO exhibit a reduction in diversity,
since there is an inherent trade-off between alignment and
diversity [71]. However, we find that the models trained

by our method have a smaller reduction in diversity on all
templates. For example, on template 1, the diversity of the
model trained by our method decreases much less than that
of DDPO, and is basically the same as the original model.
Overall, our method can mitigate the reduction in image di-
versity during RL-based diffusion model fine-tuning.

4.4. Ablation Study

We separately evaluate the impact of each proposed strategy
on alignment and diversity respectively.
Ablation Study on BPT Strategy. To evaluate the effec-
tiveness of BPT, we fine-tune Stable Diffusion with only
BPT strategy, rewarded by CLIPScore and BERTScore re-
spectively. As shown in Figure 6 (a), regardless of the
reward function, our proposed BPT strategy outperforms
DDPO in terms of alignment. As we previously analyzed,
BPT simplifies learning by training in stages, alleviating
the negative effects of sparse rewards, and thus improv-
ing alignment. Moreover, since we only train models on
timesteps of current training interval instead of all the de-
noising process, the computation costs of our method are
less than DDPO for each queried reward.
Ablation Study on BS Strategy. The effectiveness of
BS strategy on prompt-image alignment is shown in Fig-
ure 6 (a). We can observe that, based on BPT, the
BS strategy further improves alignment in terms of both
BERTScore and CLIPScore. By comparing contrastive
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Figure 8. (Compatibility: Alignment) Alignment curves of our method on template 1 when
compatible with difference RL algorithms.

Methods Vanilla Ours+Vanilla

SD 1.3179 -
DPOK 1.2785 1.3005

PG 1.2462 1.2896
DPO 1.2895 1.3051

Table 2. (Compatibility: Diversity)
IS ↑ of images on template 1 generated
by our method when compatible with
different RL algorithms.
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”road under wheel"

(c) Template 3
Figure 9. (Generalization) Examples of images generated by SD, DDPO and ours on
three templates. The prompts are not used in training. We use the same seed for sampling.

Methods Temp. 1 Temp. 2 Temp. 3

SD 0.3515 0.3168 0.2977
DDPO 0.3698 0.3175 0.3134
Ours 0.3748 0.3252 0.3183

Table 3. (Generalization) Prompt-image
alignment (measured by CLIPScore ↑) of the
generated images by SD, DDPO and our
method on the prompts based on three tem-
plates. The prompts are not used during the
training process.

samples, BS provides a clear indication of how much the
policies of current training interval contribute to final im-
ages. This helps the model to learn effective policies. Ad-
ditionally, as shown in Figure 6 (b), diversity of generated
images always suffers from reduction since there is a trade-
off between alignment and diversity. Fortunately, the BS
strategy helps models avoid learning unnecessary policies,
thereby contributing to maintaining image diversity. With
BS strategy, diversity of the fine-tuned model decreases
less, and even achieves similar diversity as the original SD.

4.5. Compatibility

Our framework B2-DiffuRL is compatible with various
RL algorithms, not limited to DDPO. We further ap-
ply B2-DiffuRL to some widely used RL algorithms in
diffusion model fine-tuning, including DPOK [17], pol-
icy gradient (PG) [57] and direct preference optimization
(DPO) [48, 63]. The implementation details are shown in
Appendix D.1. On the one hand, as we can see from Fig-
ure 8, when compatible with different RL algorithms, our
method can help each of them to improve alignment to a
greater extent. On the other hand, as shown in Table 2,
while all algorithms reduce the diversity of generated im-
ages, our method can help mitigate the reduction. These ex-
perimental results further illustrate the effectiveness of our
method in terms of both prompt-image alignment and diver-
sity when applied to various RL algorithms.

4.6. Generalization Ability
Models fine-tuned by our method show generalization capa-
bilities. We generate 1,600 images on the prompts based on
the corresponding templates but not belong to the training
lists, and test the prompt-image alignment on CLIPScore.
As shown in Table 3, compared with DDPO, the models
fine-tuned with our method also perform better on these
prompts not used for training. Figure 9 shows examples of
images generated on these prompts, qualitatively illustrat-
ing the good generalization ability of the models fine-tuned
with our method. More samples can be seen in Appendix G.

5. Conclusions
In this work, we mitigated the issues of prompt-image mis-
alignment in text-to-image diffusion models by reinforce-
ment learning (RL). We highlight the challenge of sparse
reward when training diffusion models with RL. By in-
troducing a compatible RL-based fine-tuning framework
B2-DiffuRL that leverages backward progressive training
and branch-based sampling strategies, we effectively mit-
igated the negative effects of sparse reward. Using Sta-
ble Diffusion as backbone, we performed extensive exper-
iments with various kinds of text prompts. Both qualita-
tive and quantitative experimental results demonstrate that,
compared with naive RL-based diffusion model training
method, the proposed framework achieves better prompt-
image alignment while sacrificing less image diversity.
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